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1 Introduction
Deposit insurance schemes (DIS) are set up with the purpose of providing depos-
itors with the guarantee that their deposits will be repaid whenever a bank de-
faults. To perform this role, the DIS needs to have an adequate amount of funds
at its disposal. This amount is usually set aside by collecting ex ante contributions
from banks. Many countries adjust the contributions to be paid according to the
risk which is incurred by the DIS by guaranteeing the deposits in the respective
banks.

The Norwegian Banks’ Guarantee Fund is the deposit insurer in Norway. The
Norwegian Financial Undertakings Act, Section 19-14 states that: “The deposit
guarantee scheme shall have in place appropriate systems to calculate its guarantee li-
ability. The scheme shall at all times have available a deposit guarantee fund and other
resources that are in reasonable proportion to its guarantee liability”. The act further
states in Section 19-10 that the Fund “shall base the individual member’s contribution
[...] on the member’s share of the deposit guarantee fund’s overall guarantee liability”. To
meet these requirements, the Norwegian Bank’s Guarantee Fund have designed a
total liability model which is presented in this report. The model will fulfill three
purposes. First, it will enable an assessment of the size of the fund which is avail-
able for payouts, and whether alternative funding is required. Second, the model
may be used to assess each member bank’s risk-based contribution to the fund.
And third, it may be used to determine the investment strategy for the fund. If
it is considered unlikely that the fund must be realized in the near future, it may
be expedient for parts of the fund to follow a strategy which to a greater extent
emphasizes return rather than low risk and liquidity.

IADI (2009) states that the majority of countries use their experience with bank
failure losses to determine the target deposit insurance fund. Given sufficient
data on previous losses, one may estimate the empirical distribution of losses
and use that distribution to determine the level of losses the deposit fund should
be able to absorb. However, countries like Norway, with very few failed banks
will lack sufficient data to develop an accurate empirical loss distribution. Hence,
instead the Credit Portfolio Approach has been used to model the target deposit
insurance fund for many countries, included Columbia, Canada and Singapore
(O’Keefe and Ufier, 2017). This approach to modelling the target deposit insur-
ance fund is based on the loan portfolio model of Vasicek (1987, 2002), which is
very similar to the portfolio model used in the advanced IRB approach of Basel II
(Gordy, 2003). This model, which is also the one chosen for the Norwegian Banks’
Guarantee Fund, assumes that obligors’ asset value changes are determined by
idiosyncratic and systemic risk factors. The systemic risk factor is common to all
obligors and may be viewed as the current state of the economy.
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The rest of this report is organized as follows. Chapter 2 gives an overview of
previous work on estimating the size of the target deposit insurance fund, while
Chapter 3 treats the model used here. This model requires estimates for the prob-
ability of default, loss-given-default and correlation parameter for each bank. In
Chapters 4-6 we describe the approaches used to estimate these quantities. Fi-
nally, Chapter 7 describes how contributions from the individual member banks
could be calculated based on the computed deposit guarantee fund liabilities.
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2 Previous work

2.1 Overall methodology

Most papers constituting the academic literature on DIS (e.g. Cariboni et al. (2011);
Garcia-Cespedes and Moreno (2014); Kuritzkes et al. (2002, 2005); Lee et al. (2015);
O’Keefe and Ufier (2017)) use a variant of the IRB-model of Basel II to generate
the loss distribution. In this approach, the DIS fund is regarded as a portfolio of
counterparty risks. The portfolio consists of individual exposures to the insured
banks, each having a small, but non-zero probability of default. The procedure
used to simulate the loss distribution relies on classical credit risk techniques;
defaults occur if the bank’s asset value falls below a threshold, where the asset
values follows a Gaussian one-factor model.

The Systemic Model For Banking Orginated Losses (SYMBOL) (Lisa et al., 2011;
Zedda and Cannas, 2017) is a bit different from the above. In this approach, the
average probability of default for the obligors in a bank’s credit portfolio is first
obtained by numerical inversion of the Basel II IRB-formula, using the reported
level of minimum capital requirement and total exposure, and setting the LGD,
maturity and turnover to their standard values. Then, the loss distributions for all
the banks are simulated using the Gaussian one-factor model, using the same to-
tal exposure, LGD, maturity and turnover as when determining the probability of
default. Finally, for each bank and each scenario the difference between the simu-
lated loss and the bank’s actual capital is computed. If the difference is negative,
the bank is regarded to be insolvent in the specific simulation.

2.2 Probability of default

The approach for estimating the probability of default (PD) for each bank is dif-
ferent in different papers. First, there are public sources of risk ratings, such as
from Standard & Poor’s or Moody’s. Both of these rating agencies give solvency
standards for the rated institutions in the form of a credit grade, which may then
be converted to a PD. Many banks are however not rated by the large rating
agencies. For these banks CAMEL-style or shadow ratings may be used. These
are unofficial ratings given to an issuing party by a credit agency (e.g. a bank),
but without any public announcement of the rating. One potential disadvantage
with these ratings is that they take expert judgement into account.

The next type of approaches for estimating the probability of default are logistic
regression models (or other statistical models) where the dependent variable is
1 or 0 dependent on whether there is a bank failure or not during the time pe-
riod of interest. The RiskCalc Banks model from Moody’s Analytics Inc. (Wang
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et al., 2014) is a such model. The most informative explanatory variables will
vary across countries. However, bank financial measures of capital adequacy, as-
set quality, management quality, earnings strength, liquidity and sensitivity to
market prices are frequently listed as significant variables (O’Keefe and Ufier,
2017). Given the low frequency of bank failures, estimation of such models re-
quires a long observation period, especially if macroeconomic indicators are used
as explanatory variables.

A widely used insolvency risk measure in the banking and financial stability lit-
erature is the Z-score (Hannan and Hanweck, 1988). With this measure, bank in-
solvency is commonly defined as a state where the sum of the bank’s capital asset
ratio and its return on assets is negative. As far as we are concerned, the Z-score
has so far not been used in the deposit insurance fund literature. One reason for
this might be that it is not evident how to link the Z-score to a probability of bank
default. Traditionally, one has just linked the Z-score to an upper bound of the
bank’s probability of insolvency given by 1/(1 + Z-score2). However, in a very
recent paper (Bouvatier et al., 2018), two alternative ways of converting Z-scores
to probabilities are proposed.

Finally, the bank’s default probabilities may be estimated from CDS or bond
market data, see e.g. Cariboni et al. (2011). In theory, marked-implied forecasts
should be superior both to credit ratings and statistical models, since they may
be updated in real time. The quality of market-based models depends however
on the availability and quality of market data. Such models rely on the efficient
financial markets hypothesis that assumes perfect liquidity, while in practice, the
bond/CDS prices may include substantial liquidity premiums in addition to the
credit risk premiums (Smirnov and Zdorovenin, 2012). Hence, risk neutral proba-
bilities extracted from bond spreads can be considered as upper bounds for actual
probabilities. It should also be noted that default rates inferred from the market
data are risk-neutral, in contrast to real-world estimates produced by the alterna-
tive approaches. Hence, the risk-neutral probabilities should be mapped to actual
ones before they are used to generate the DIS loss distribution.

2.3 Loss-given-default

The previous literature on Loss-Given-Default (LGD) is limited. Most papers treat-
ing DIS contain very little information on how the LGD values for the different
banks are determined. In Cariboni et al. (2011) the LGD is e.g. set to 60% for all
banks without any further explanation. Smirnov and Zdorovenin (2012) states
that if available default history does not allow for meaningful LGD estimation,
deposit insurers can adopt the foundation IRB approach of the Basel II accord.
Here, a deposit insurer that has a senior claim on failed banks can assume a LGD
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of 45%. Kuritzkes et al. (2005) and O’Keefe and Ufier (2017) note the fact that loss
rates tend to decline as bank size increases and estimate a relationship between
the LGD and the asset size of the banks.

Alternatively, one may use information embedded in credit default swaps or
bond spreads to estimate LGD values. In Heynderickx et al. (2016a), a method
originally proposed by Schlafer and Uhrig-Homburg (2010) is used to determine
recovery rates of the European banking sector. The key factor of this method is
that debt instruments of the same issuer with different rankings face identical
default risk, but different default-conditional recovery rates. Using the ratio of a
senior and a subordinated CDS and taking the specific liability structure of banks
into account (which consists typically of hybrids, subordinated debt, senior un-
secured debt, senior secured debt, deposits etc.), the recovery rate of senior debt
may be computed.

2.4 Correlations

In all the papers using the Gaussian model one-factor model listed in Section 2.1,
correlation between defaults of different banks is imposed through the parameter
specifying the degree of dependence of the systematic factor. Like for the LGD,
most papers treating DIS contain very little information on how this parameter
is determined for different banks. In Cariboni et al. (2011) the parameter is set
to 70% for all banks without any further explanation. O’Keefe and Ufier (2017)
also use one value for all banks, but it is determined by first estimating pairwise
Pearson correlations for each pair of bank stock returns (or returns on equity for
non-listed banks) and then taking the average of these correlations.

If the available data does not allow for meaningful estimation of the correlations,
they might be computed using the Basel II, IRB approach. Here, the correlation
parameter decreases with increasing PD and increases with firm size. The intu-
ition behind these relationships are as follows. The higher the PD, the higher
the idiosyncratic (individual) risk components of a borrower. The default risk
depends less on the overall state of the economy and more on individual risk
drivers. The larger a firm, the higher its dependency upon the overall state of the
economy, and vice versa. Smaller firms are more likely to default for idiosyncratic
reasons.
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3 Total loss simulation
We have chosen to follow Cariboni et al. (2011); Garcia-Cespedes and Moreno
(2014); Kuritzkes et al. (2002, 2005); Lee et al. (2015); O’Keefe and Ufier (2017)
and use a variant of the IRB-model of Basel II to generate the loss distribution.
In this approach, the DIS fund is regarded as a portfolio of counterparty risks.
The portfolio consists of individual exposures to the insured banks, each having a
small, but non-zero probability of default. The procedure used to simulate the loss
distribution relies on classical credit risk techniques; default occur if the bank’s
asset value falls below a threshold, where the asset value follows a Gaussian one-
factor model.

3.1 Model

The total loss of the DIS a specific year t is given by

Lt =
N∑
n=1

wn,t LGDnDn,t,

where wn,t and LGDn are the exposure and loss-given-default, respectively, of
bank n, and Dn,t is an indicator variable that is 1 if bank n defaults in year t. The
exposure of a specific bank n is assumed to increase with a certain factor fn for
each year of the simulation period, i.e.

wn,t = wn,0(1 + fn)t−1,

where wn,0 and fn for all banks are input to the simulation module.

The probability of Dn,t = 1 is pn,t, where pn,t is the probability of default (PD) of
bank n in year t. In the Gaussian one-factor model one have that

Dn,t = 1⇔ an,t ≤ Φ−1(pn,t), (1)

where
an,t =

√
ρnXt +

√
1− ρn ξn,t.

Here,Xt is the systematic risk factor and ξn,t the specific risk associated with bank
n in year t.Xt and ξn,t are assumed to be independent and N(0,1)-distributed, and
ρn is the correlation parameter associated with bank n.

With this model, the so-called asset correlation betwewn two banks n and m is
Cor(an,t, am,t) =

√
ρn
√
ρm. Note, that the asset correlation is different from the

default correlation, which is given by

κn,m =
Φ2

(
Φ−1(pn),Φ−1(pm),

√
ρn
√
ρm
)
− pn pm√

pn (1− pn) pm (1− pm)
, (2)
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where Φ2(·) is the cumulative bivariate normal distribution function. The default
correlation usually is significantly smaller than the asset correlation.

When simulating losses on a T -year horizon, we allow for the systematic factor
to follow a mean-reverting process in the following way:

Xt = αXt−1 + εt,

where εt ∼ N(0, 1− α2). If α is zero, there is no dependence in time.

3.2 Simulation algorithm

The loss distribution for a specific year t is simulated using the following proce-
dure:

1. Sample Xt = αXt−1 + εt where εt ∼ N(0, 1− α2).

2. For all banks n

• Sample ξn,t ∼ N(0, 1).

• Compute an =
√
ρnXt +

√
1− ρn ξn,t.

• Set Dn,t = 1 if an,t ≤ Φ−1(pn,t) and 0 otherwise.

• Compute the loss for bank n as Ln,t = wn,t LGDnDn,t.

3. Compute the total loss for year t as Lt =
∑

n Ln,t.

In addition to the total loss, The Norwegian Banks’ Guarantee Fund is interested
in the liquidity reserve. The liquidity reserve Rn,t for bank n in year t is given by

Rn,t =


0 if t < tdef

wn,t if t = tdef

wn,t LGD
∗
n,t if t > tdef

Here, tdef is the year of default for bank n and LGD∗
n,t is computed as

LGD∗
n,t = LGD∗

n,t−1 − bt−tdef (LGD∗
tdef
− LGDn),

whereLGD∗
tdef

and b1, b2, b3 and b4 are input parameters to the simulation module.
Usually LGD∗

tdef
should be 1, and b1, b2, b3 and b4 should sum up to one, assuming

that the final LGD, LGDn, is known after 5 years.

The total liquidity reserve in year t is finally computed as Rt =
∑

nRn,t.

3.2.1 Resolution

Resolution is the restructuring of a failing bank through the use of resolution
tools in order to safeguard public interests. Some banks are categorized as too
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systemically important and interconnected to allow for their liquidation through
a normal insolvency process. For those banks the resolution tools can provide for
an orderly wind-down of the bank or restore the viability of all or part of the
institution. Through resolution the functions of the bank that are critical to the
financial market or the real economy would be protected, while ensuring that
losses are borne by shareholders and creditors of the failing bank.

Available financial means of the deposit guarantee scheme could be used in accor-
dance to the resolution proceedings. The liability of the deposit guarantee scheme
shall not be greater than the amount of losses that it would have had to bear had
the institution been wound up under normal insolvency proceedings. The liabil-
ity of a deposit guarantee scheme shall also not be greater than the amount equal
to 50 % of the minimum target level of 0.8 % of total covered deposits. This means,
that if bank n is critical to the financial market, its loss the year of default, tdef , is
limited to

L∗
n,tdef

= min
(
wn,tdef LGDn, 0.5× 0.008× Total covered depositstdef

)
,

where
Total covered depositstdef =

∑
n

wn,tdef .

Further, the liquidity reserve Rn,t for bank n in year t ≥ tdef is limited to

R∗
n,t = min

(
wn,tdef LGDn, 0.5× 0.008× Total covered depositst

)
,

where
Total covered depositst =

∑
n

wn,t.
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4 Probability of default
In a preliminary phase, all the alternatives discussed in Section 2.2 were consid-
ered. The rating-based approach was rejected due to the fact that most Norwegian
banks are not rated by the large rating agencies. The logistic regression model can
not be used given the very low frequency of historical bank failures, while the Z-
score approach was not deemed appropriate due to volatile and non-intuitive
results. Hence, we decided to use market data to estimate the probabilities of
default. As stated in Section 2.2, marked-implied forecasts should in theory be
superior to both credit ratings and statistical models. In Norway, CDS contracts
are written only on a very limited number of banks. Hence, we have chosen to use
bond yield spreads instead. The specific method used to derive the risk neutral
probabilities is described in Section 4.1. The risk-neutral probabilities should be
mapped to actual ones before they are used to generate the DIS loss distribution.
In Section 4.2 we describe the conversion method used in this project. The actual
default probabilities are computed for all time points represented in the data set
used for estimation giving rise to a PD time series for each bank. In Section 4.3
we describe how obtain the final PDs that are to be used in the loss simulations
from these time series’.

4.1 Risk-neutral probabilities

The bond spread data used to estimate the risk-neutral probabilities of default
consists of prices of senior unsecured, subordinated and hybrid securities. Differ-
ent financial instruments from the same bank are in theory exposed to the same
default risk. We have therefore chosen to determine the risk-neutral probability
of default for a specific bank as a function of a hazard rate computed as an aver-
age over the hazard rates of three different types of instruments. In what follows
we describe the procedure for determining the probabilities in more detail.

Let the probability of default between horizon h and horizon h + 1 for a specific
instrument be given by

P (h, h+ 1) = 1− exp{−λ(h, h+ 1)}, (3)

where λ(h, h + 1) is the average hazard rate or default intensity during the time
period between horizon h and horizon h+ 1. It is given by

λ(h, h+ 1) = (h+ 1)λ(0, h+ 1)− hλ(0, h). (4)

where λ(0, h) is the average hazard rate during the time period between year 0

and year h1.

1. The probability of default between time 0 and time h is given by P (0, h) = 1−exp{−λ(0, h)h}.
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Suppose now that s(h) is the bond yield spread for a h-year bond. Then, it is
approximately true (Hull, 2015) that

λ(0, h) =
s(h)

1−R
, (5)

where R is the estimated recovery rate for the actual bond.

Corporate bond spreads are affected by both credit and liquidity risk. When us-
ing the formula in Equation 5, one should ideally use only the fraction of the
spreads driven by the credit risk. Many researchers have tried to disentangle the
separate effects of credit and liquidity risk on corporate bond yields, see e.g.
Collin-Dufresne et al. (2001); Driessen (2005); Helwege et al. (2014); Longstaff
et al. (2005). However, this is very challenging, due to the fact that liquidity risk
isn’t readily measured. In some studies, the credit risk is shown to account for
only a small fraction of the observed corporate bond spreads, while in other, the
portion of the spread driven by credit risk is claimed to be much larger. More-
over, since the research conducted up to date almost exclusively has focused on
the U.S. or large European markets, little is known about the liquidity of the Nor-
wegian corporate bond market. We have therefore decided to let the fraction of
the bond spreads accounted for by the credit risk be an input to the estimation
module. More specifically, the user specifies a matrix like the one below, where
the number in a specific cell gives the fraction of the corresponding bond spread
accounted for by credit risk.

Instr./h 1y 2y 3y 4y 5y
Senior 0.9 0.7 0.7 0.7 0.6
Hybrid 0.9 0.7 0.7 0.7 0.6
Sub 0.9 0.7 0.7 0.7 0.5

Before using Equation 5 to compute the hazard rates, the bond spreads s(h) are
reduced according to the specified fractions. The yearly default probabilities are
then derived as follows:

1. We compute hazard rates λ(0, h) for horizons h = 1, . . . , 6 years using Equa-
tion 5.

2. We obtain yearly hazard rates λ(h, h+ 1) for year h = 1, . . . , 5 using Equation
42.

3. We compute one year default probabilities using Equation 3.

2. Note that if the adjustment factors for the hazard rates λ(0, h) and λ(0, h+1) are very different,
one might get negative yearly hazard rates λ(h, h+ 1). If this is the case, the yearly hazard rate is
set to a positive tiny number.
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As described above, different financial instruments from the same bank are in the-
ory exposed to the same default risk. For a specific bank, step 1 above is therefore
replaced by the following (note that LGD = 1-R)3:

• Compute λsenior(0, h) = ssenior(h)/LGDsenior(5).

• Compute λsub(0, h) = ssub(h)/LGDsub(5).

• Compute λhybrid(0, h) = shybrid(h)/LGDhybrid(5).

• Compute λavg(0, h) = wsenior λsenior(0, h) +wsub λsub(0, h) +whybrid λhybrid(0, h).

The weights wsenior, wsub and whybrid are input to the program. The framework
for determining LGDsenior(5), LGDsub(5) and LGDhybrid(5) is given in Section 5.1.
Since it is common to keep the risk neutral LGD fixed over the different durations
for a given level of seniority, we use the 5-years LGD for all values of h. The
choice of the 5-year LGD, is due to the fact that the corresponding instruments
are usually regarded to be the most liquid ones.

4.2 Mapping between risk-neutral and real-world probabilities

Let PDrn be the risk-neutral default probability for a specific bank and specific
year computed as described in Section 4.1 (the subscripts are here dropped for
simplicity). To determine the mapping between risk-neutral and actual default
probabilities we use the approach proposed in Heynderickx et al. (2016b). Here,
the relationship between the coverage ratio µ defined as

µ =
PDrn

PDrw

,

and the actual default probabilities PDrw is modelled by

log(µ) = a (PDrw)b , (6)

where the parameters a and b are input to the estimation module of the soft-
ware. When using Equation 6 to compute the actual default probabilities, the
risk-neutral probabilities might not be a strictly increasing function f(·) of the de-
fault probabilities. To ensure that this function is montonically increasing, we set
PDrw equal to (−1/(a · b))1/b if it is lower than this value, which is the minimum
value of the function f(·).

In Heynderickx et al. (2016b), the parameters a and b were estimated based on a
sample of around 550 European private sector companies, including banks, other

3. Note that there are no market prices avaliable for the horizon h = 4. Hence, these prices are
obtained as an average of the prices for h = 3 and h = 5.
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financial and non-financial corporates. The actual default probabilities were es-
timated from transition matrices computed by rating agencies, while the risk-
neutral probabilities were derived from CDS data. Different values of a and b

were estimated for different predefined sub-periods. The results are reproduced
in Table 1.

Table 1. Parameter values from Heynderickx et al. (2016b).

Period Duration a b R2-adj
Entire period 2004-2014 4.1649 -0.2588 0.6162
Pre-crisis 2004-2007 2.9242 -0.2975 0.5036
Financial crisis 2008-2009 4.7708 -0.2460 0.8671
Sovereign crisis 2010-2012 5.1012 -0.2263 0.9126
Post-crisis 2013-2014 4.7200 -0.3015 0.8276

In a preliminary phase of this project we also estimated a and b using shadow
ratings from SpareBank 1 Markets from Q1, 2018 and bond spread data from
Nordic Bond pricing from June 29th, 2017. The shadow ratings were converted to
actual default probabilities according to the relationships shown in Table 2. The
estimated relationship between the coverage ratio and the actual default proba-
bilities is shown in Figure 1, corresponding to a = 6.92 and b = −0.33.
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Table 2. Relationship between ratings and default probabilities (source: Moody’s).

Rating PD
AAA 0.002%
AA+ 0.020%
AA 0.035%
AA- 0.060%
A+ 0.090%
A 0.150%
A- 0.240%
BBB+ 0.380%
BBB 0.620%
BBB- 1.000%
BB+ 1.620%
BB 2.620%
BB- 4.240%
B+ 6.850%
B 11.090%
B- 17.940%
CCC+ 29.030%
CCC 46.980%
CCC- 76.010%
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Figure 1. The relationship between the coverage ratio and the actual default probabilities.

4.3 Which PD to use?

The real-world PDs resulting from the procedures described in Sections 4.1 and
4.2 are first computed for all time points represented in the data set with historical
prices given as input to the software. Then, the final PDs that are to be used in the
loss simulations are determined using one of the following three approaches:

• The final PD for a specific bank and a specific horizon are the one computed
for the last time point of the input data.

• The final PD for a specific bank and a specific horizon is computed as the
average over all available PDs for this bank/horizon.

• The final PD for a specific bank and a specific horizon is computed as the
maximum over all available PDs for this bank/horizon.
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5 Loss-given-default
Like for the probability of default, we have chosen to use information embedded
in bond spreads to estimate loss-given-default (LGD) values. Our approach is
based on the work described in Heynderickx et al. (2016a). We first fit a model
for the firm-wide recovery rate valid for all banks. Then, for each specific bank n,
we use this model and the capital structure of the bank to determine instrument
specific LGDs. These LGDs are later adjusted before they are used to compute the
deposit insurance fund loss-given-default for bank n.

More specifically, the procedure for obtaing the LGD values is as follows:

1. Build a model for estimating the parameters of a beta distribution used to
determine LGDs with 5-years maturity for different capital instruments

2. For each bank n

a. Use the model from step 1 to determine LGDbank(n, 5), LGDsenior(n, 5),
LGDsub(n, 5) and LGDhybrid(n, 5)

b. Compute adjusted valuesLGDadjust
senior(n, 5),LGDadjust

sub (n, 5),LGDadjust
hybrid(n, 5).

c. DetermineLGDDIF (n) fromLGDbank(n, 5),LGDadjust
senior(n, 5),LGDadjust

sub (n, 5),
and LGDadjust

hybrid(n, 5).

In the above procedure, LGDsenior(n, 5), LGDsub(n, 5) and LGDhybrid(n, 5) are the
estimated LGDs for senior unsecured, subordinated and hybrid securities for
bank n at 5-years maturity, while LGDbank(n, 5) is the firm-wide loss-given de-
fault for the same maturity. Further, LGDadjust

senior(n, 5), LGDadjust
sub (n, 5), and

LGDadjust
hybrid(n, 5) are adjusted versions of LGDsenior(n, 5), LGDsub(n, 5) and

LGDhybrid(n, 5), and finally, LGDDIF (n) is the deposit insurance fund loss-given-
default for bank n.

In Sections 5.1 and 5.2 steps 2a) and 1) are more thoroughly described, while the
approach for computing the adjusted LGDs in step 2b) is outlined in Section 5.3.
Finally, Section 5.6 contains the procedure for obtaing the deposit insurance fund
loss-given-default in step 2c).

5.1 LGD for different capital instruments

The LGD for a specific instrument instr issued by a bank n at time t, is given by

LGDinstr,n,t = 1− E[Rinstr,n,t.]

If the absolute priority rule (APR) holds, recovery rates are a function only of
the ratio of firm value to total liabilities and the capital structure, both at time
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of default. Hence, we assume that the expected risk neutral recovery rate for a
specific instrument instr given by (Heynderickx et al., 2016a)

E[Rinstr,n,t] =

∫ 1

0

ρinstr,n,t(x)hn,t(x)dx, (7)

where x is the ratio of the value of a bank at default and its liabilities, ρinstr,n,t(x)

is the instrument-specific recovery rate, and hn,t(x) is the risk neutral density of
recovery. The expected firm-wide recovery rate, which is equal to the expected
ratio of the firm value to liabilities at default, is given by

E[Rfirm,n,t] =

∫ 1

0

xhn,t(x)dx. (8)

The risk-neutral density of recovery is assumed to be a beta distribution (this is
a common assumption, see e.g. Gupton and Stein (2002)). Past studies suggest
that the observed recovery can be explained by some firm specific factors (Heyn-
derickx et al., 2016a; Schlafer and Uhrig-Homburg, 2010). We therefore let the
expectation of the beta distribution4 be given by

logit(µn,t) = γ0 + γ1 log(Cn,t),

where Cn,t is the total assets for bank n at time t. The maximum possible variance
of the beta distribution depends on the mean of the distribution. Like Heynder-
ickx et al. (2016a) we therefore express the standard deviation as a function of the
average recovery rate, i.e.

σn,t = γ2

√
µn,t − µ2

n,t.

The parameters γ0, γ1 and γ2 are estimated from historical bond spreads. The
estimation procedure is described in Section 5.2.

Let the proportions of hybrids, subordinated debt, senior unsecured debt and a
rest for a specific bank at a specific point in time be Ph, Pj , Ps and Pl, respectively,
with Pl+Ps+Pj+Ph = 1. See Appendix A for the definitions of the different types
of debt in our case. The recovery rates for senior unsecured, subordinate and
hybrid debt are given by (for the sake of simplicity we here omit the subscripts n
and t):

ρsenior(x) =


0 x ∈ [0, Pl]
x−Pl

Ps
x ∈ [Pl, Pl + Ps]

1 x ∈ [Pl + Ps, 1]

,

ρsub(x) =


0 x ∈ [0, Pl + Ps]
x−(Pl+Ps)

Pj
x ∈ [Pl + Ps, 1− Ph]

1 x ∈ [1− Ph, 1]

,

4. The beta distribution has two parameters α and β, and the mean and variance of the distribu-
tion are given by µ = α

α+β and σ2 = αβ
(α+β)2(α+β+1) , respectively.

Determining the Norwegian deposit guarantee fund liabilities 20



and

ρhybrid(x) =

{
0 x ∈ [0, 1− Ph]
x−(1−Ph)

Ph
x ∈ [1− Ph, 1]

.

5.2 Estimating the parameters of the beta distribution

To determine the parameters of the beta distribution in Section 5.1, we use the
approach proposed in Heynderickx et al. (2016a), which again is based on the
work of Schlafer and Uhrig-Homburg (2010). This approach exploits the pricing
information from two different financial instruments which are exposed to the
same default risk, but have different recovery rates. Given this information and
an assumption regarding the (in)dependence between recovery and default rates,
one can estimate the distribution of the risk-neutral recovery.

As previously stated, the liability structure of a bank typically consists of hy-
brids, subordinated debt, senior unsecured debt and a rest. Our method utilises
the fact that for a specific bank, different financial instruments have different re-
covery rates, but they are exposed to the same default risk. Hence, assuming that
λsenior = λsub = λhybrid for a given date t, bank n and maturity/horizon h we have
from Equation 5 that

LGDsenior

LGDsub

=
ssenior
ssub

=
1− E[Rsenior]

1− E[Rsub]
,

and
LGDsenior

LGDhybrid

=
ssenior
shybrid

=
1− E[Rsenior]

1− E[Rhybrid]
,

where ssenior, ssub and shybrid are the prices of respectively a senior unsecured,
subordinated and hybrid security, and E[Rsenior], E[Rsub] and E[Rhybrid] the cor-
responding theoretical expected recovery rates. Note that the prices, and hence
the recovery and LGD-values are different for different dates t, different banks
n, and different maturities/horizons h, but to simplify the notation we have re-
moved the subscripts here.

The above relationships mean that we can estimate the parameters γ0, γ1 and γ2 in
the beta distribution by calibrating model-implied ratios to the actual ones. More
specifically, we minimize√√√√ 1

N

1

TN

N∑
n=1

Tn∑
t=1

[(Vmodel,A(t, n)− Vobs,A(t, n))2 + (Vmodel,B(t, n)− Vobs,B(t, n))2],

(9)
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with respect to the parameters γ0, γ1 and γ2, respectively, or just γ0 and γ2 if the
user of the software does not want the beta distribution to be bank specific5. In
Equation 9, N is the number of banks for which prices are available and Tn is the
number of quarterly observations for bank n. Further

Vmodel,A = (1− E[Rsenior])/(1− E[Rsub]),

Vmodel,B = (1− E[Rsenior])/(1− E[Rhybrid]),

Vobs,A = ssenior/ssub,

Vobs,B = ssenior/shybrid,

whereE[Rinstr,n,t] is given by Equation 7. Note that this optimization is performed
using securities with maturity/horizon h = 5 years, only. This is due to the fact
that we have decided to use 5-years LGDs in the simulation algorithm described
in Section 3.2. Note also that when performing the minimization in Equation 9,
we only use observations for which all of ssenior, ssub and shybrid exist. Finally, one
should be aware of the fact that if the 5-year bond spreads ssenior, ssub and shybrid

are adjusted with different factors to account for different liquidity premiums (see
Section 4.1), the ratios Vobs,A and Vobs,B will change. This means that the param-
eters of the beta distribution also might be different from those obtained when
using the original bond spreads.

5.3 Adjusted LGDs

As stated in Section 5.1, for a specific bank, different financial instruments have
different recovery rates, but they are exposed to the same default risk. Hence,
if we derive the risk neutral default probabilities for the hybrids, subordinated
deb and senior unsecured debt for a specific bank using the LGDs estimated in
Section 5.1, these default probabilities should in theory be equal. However, in real
life, this will seldom be true. Hence, we have decided to compute adjusted LGD
values using the procedure outlined below, where we use average hazard rates
computed as described in Section 4.1. Note that all quantities are computed for
a specific bank n at a specific time point t, but to simplify the notation we have
omitted the subscripts t and n.

• Determine LGDadjust
senior(5) = ssenior(5)

λavg(0,5)

• Determine LGDadjust
sub (5) = ssub(5)

λavg(0,5)

5. We use numerical optimization when minimizing Equation 9. This means that we need to
specify start values for the parameters. In the current version of the software, the start values of
γ0, γ1 and γ2 are set to respectively 2,-0.1, and 0.37, if the beta distribution is to be bank specific,
while the start values of γ0 and γ2 are set to 6 and 0.5 if the beta distribution is not to be bank
specific.
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• Determine LGDadjust
hybrid(5) =

shybrid(5)

λavg(0,5)

Here, ssenior(5), ssub(5) and shybrid(5) are the prices for senior, subordinated and
hybrid securities at 5-years maturity, while λavg(0, 5) is the average hazard rate.

5.4 Missing prices

As previously mentioned, when estimating the parameters of the beta distribu-
tion using the procedure described in Section 5.2, all observations for which there
are missing prices are removed. However, when computing the risk-neutral prob-
abilities in Section 4.1 and the adjusted LGDs in Section 5.3 for all banks at all
points in time, we need to replace any missing prices. To replace the missing
prices, we have to estimate the corresponding risk classes. The procedure for es-
timating the risk class of an instrument, for which the risk class is not known at a
certain point in time, is performed in two rounds. In the first round, for each time
point and each bank we use the following rules:

• If the risk classes of two of the instruments are known, the third instrument
will be assigned the risk class of the instrument just above in the debt hier-
archy. Hence, if the risk class of hybrid is missing, it will be given the risk
class of subordinated, subordinated will be given the risk class of senior un-
secured, while senior unsecured will be given the risk class of subordinated,
since senior unsecured is at the top of the debt hierarchy.

• If the risk class of only one of the instruments is known, the risk class of this
instrument is used also for the two other instruments.

• If the risk classes of all three instruments are missing, nothing is done in this
round.

There will be observations for which the risk class assigned using this procedure
has no corresponding price. An example is shown in Table 3. The table shows for
a certain point in time, and each risk class, the instruments for which prices exist.
Assume that a bank has risk class 15 for subordinated and hybrid securities. Then,
according to the procedure above, we will assign risk class 15 for senior securities
also. However, at this point in time there are no prices for senior securities with
risk class 15. In such cases we select the first risk class moving upwards in the
table which have available prices. In this example this would be risk class 12.

The result of the first round, will be a data set for which either all, or none of the
instruments have a risk class assigned. In the second round, we go through this
data set, and for each instrument of a bank missing the risk class, we use the last
observed risk class for this instrument and this bank. If there for a bank are no
previous risk class observations, the risk class is set to c for all instruments and
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Instruments for which prices are available Risk Class
Sen, Sub, Hyb 1
Sen, Sub, Hyb 2
Sen, Sub, Hyb 3
Sen, Sub, Hyb 4
Sen, Sub, Hyb 5
Sen, Sub, Hyb 6
Sen, Sub, Hyb 7
Sen, Sub, Hyb 8
Sen, Sub, Hyb 9
Sen, Sub, Hyb 10
Sen, Sub, Hyb 11
Sen, Sub, Hyb 12
Sub, Hyb 13
Hyb 14
Sub, Hyb 15

Table 3. A list over instruments for which prices are available. Sen stands for Senior
Unsecured, Sub for Subordinated and Hyb for Hybrid

all time points. Here c is a parameter which is input to the software.

5.5 Non-valid risk classes

The method for filling missing prices described in Section 5.4 assumes an or-
dering of the risk classes, as shown in Table 3. Some banks have a special risk
class that does not fit into this hierarchy. Two examples are Bank Norwegian and
Pareto Bank, where the risk class is simply the name of the bank. We therefore
replace the risk class with a risk class that fits in the risk hierarchy using the fol-
lowing procedure for each instrument:

• If the price is lower than the price of risk class 1, assign risk class 1.

• If the price is between two risk classes, assign the risk class of the closest
price.

• If the price is higher than the price of the highest risk class, assign the highest
risk class pluss 1, i.e. create a new risk class.

Note that we are only changing the risk class for banks with non-valid risk classes.
The price is kept the same and no information is lost. This is only to make sure
the procedure described in Chapter 5.4 works as expected.
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5.6 LGD for the Norwegian deposit insurance fund

Given that we have computed the adjusted LGDs as described in Section 5.3, the
final step is to determine LGDDIF (n) the Norwegian deposit insurance fund LGD
for bank n. This LGD is computed using the following procedure:

First we determine the potential losses connected to the different capital instru-
ments:

Hybrid lossn = LGDadjust
hybrid(n, 5) ·Hybrid capitaln

Subordinate Lossn = LGDadjust
sub (n, 5) · Subordinate capitaln

Senior lossn = LGDadjust
senior(n, 5) · Senior capitaln

Capital debt instrument lossn = Hybrid lossn + Subordinate Lossn + Senior lossn.

Then, we compute the following quantities

Total debt lossn = LGDbank(n, 5) · Total liabilitiesn
Non-guaranteed lossn = c1 · LGDk1(n, 5) · (Total depositsn −Guaranteed depositsn)

Other debt lossn = c2 · LGDk2(n, 5) ·Other debtn
Loss before covered depositsn = Capital instrument lossn + Non-guaranteed lossn

+ Other debt lossn,

where c1 and c2 are two parameters that are specified by the user. The parameters
k1 and k2 can be set to senior or bank by the user.

Finally, the Norwegian deposit insurance fund LGD is determined by

LGDDIF (n) = max

(
c3,

Total lossn − Loss before covered depositsn
Guaranteed depositsn

)
,

where c3 is a minimum limit which is specified by the user.
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6 Correlations
As previously stated, using the Gaussian model one-factor model, correlation be-
tween defaults of different banks is imposed through the parameter ρ specifying
the degree of dependence of the systematic factor. Like O’Keefe and Ufier (2017),
we use historical stock returns to determine the ρ-values for the banks that are
listed on the Norwegian Stock Exchange. The estimation procedure is described
in Section 6.1. For non-listed banks have to use an alternative approach, see Sec-
tion 6.2.

6.1 Banks for which stock prices are available

O’Keefe and Ufier (2017) determine asset correlations by estimating pairwise
Pearson correlations for each pair of bank stock returns. Since the number of
member banks in the Norwegian Banks’ Guarantee Fund is quite large, a such
procedure would mean that we have to estimate a huge correlation matrix. Hence,
instead we have chosen to estimate the asset correlation for a specific bank by the
correlation between the bank stock price returns and the returns of the total stock
index (OSEBX). That is, the total stock index is used as a proxy for the systematic
factor in the Gaussian one-factor model.

The correlations between the bank stocks and the total stock index varies over
time. The length of the data series used to estimate the correlations plays a signif-
icant role. A shorter window is more reflective of the economic environment, but
limits the number of data points, which ultimately produces more unstable and
noisy estimates.

Understanding how the asset correlation change through time will allow us to in-
vestigate how the dynamics of this parameter behave during periods of economic
stress. To explore the time-varying dynamics of the asset correlations, we follow
a moving window approach. We use a window of length 2 years with monthly
resolution to compute the first asset correlation. Next, we move the window for-
ward by one month, and compute a new estimate, and so on. In Figure 2 we have
computed the moving window correlations during the period October 1998 to
October 2018 for 16 different stocks. As can be seen from the figure, the correla-
tions change quite much through time. From the conservative perspective, one
should use a high quantile in the shown time series as the estimate for the asset
correlation in the loss simulations.

We have chosen to let the user decide whether he wants to use median correla-
tions or extreme correlations as input to the loss simulations. With extreme corre-
lations, we here mean a certain quantile q of the moving window correlation time
series, where q is input to the program.
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Totens Sparebank Voss Veksel−og Landmandsbank ASA

Sparebanken Møre Sparebanken Sør Sparebanken Vest Sparebanken Øst Storebrand Bank ASA

SpareBank 1 Ringerike Hadeland SpareBank 1 SMN SpareBank 1 SR−Bank ASA SpareBank 1 Sørøst−Norge SpareBank 1 Østfold Akershus

Sandnes Sparebank Skue Sparebank Sogn Sparebank SpareBank 1 Helgeland SpareBank 1 Nord−Norge

Aurskog Sparebank DNB Bank ASA Høland og Setskog Sparebank Jæren Sparebank Melhus Sparebank
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Figure 2. Time-varying dynamics of the asset correlations.

6.2 Banks for which stock prices are not available

For non-listed banks we cannot use the approach described in Section 6.1. For
these banks, and for banks for which the historical time series is limited6, we in-
stead estimate a model relating the median correlation to the total capital of the
bank. We want the correlation to be in the interval (0,1). Hence, we use beta re-
gression (Ferrari and Cribari-Neto, 2004) instead of ordinary linear regression.
In this method the response is beta-distributed and related to other variables
through a regression structure. We estimate the beta regression model using data
for the banks for which we have more than 10 years of monthly data. Figure 3
shows the estimated relationship between the total capital of the bank and the
median correlation with the total stock index with the actual observations super-
imposed.

The extreme correlations for non-listed banks are also determined by regression,
but in this case we assume a linear model with the extreme and median corre-
lations as response and explanatory variable, respectively. Figure 4 shows the
estimated relationship between the median correlation and the extreme correla-

6. In the current version of the software, the approach described in Section 6.1 is used only for
banks for which we have more than 10 years of monthly data.
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tion with the actual observations superimposed. In this specific case, the extreme
correlation is determined as the 90% quantile of the moving window correlation
time series.
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Figure 3. Relationship between total assets and median correlation. The green line shows
the relationship estimated by the beta regression.
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Figure 4. Relationship between median correlation and extreme correlation. The green
line shows the relationship estimated by the linear regression.
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7 Contribution calculations
Having computed the deposit guarantee fund liabilities using the method desribed
in Chapter 3, the final step is to calculate the contributions of the member insti-
tutions. This can be done in many ways, see e.g. Kuritzkes et al. (2002), Huang
et al. (2012) and Zedda and Cannas (2017). We have chosen to use the following
approach to determine the contribution of bank n in year t.

Let Ln,t and Lt be the loss for bank n and the total loss over all banks during the
period s = 1, . . . t, respectively. Assume that the size of the total deposit fund is
set to the q-percent quantile of the total loss, i.e. VaRq(Lt). Then, the absolute and
relative contribution of bank n is computed as

Cn,t = κn,t VaRq(Lt), (10)

and
κn,t =

E[Ln,t|Lt > VaRq(Lt)]

E[Lt|Lt > VaRq(Lt)]
. (11)

When κn,t is defined in this way, we are ensured that

N∑
n=1

Cn,t = VaRq(Lt).

If the contributions alternatively are to be calculated based on the liquidity re-
serve, we use exactly the same approach, but Ln,t and Lt are replaced with Rn,t

and Rt, respectively.

As an alternative to the approach above, the contributions may also be computed
using mean values of the losses and the liquidity reserves. In this case, the abso-
lute and relative contributions instead are given by

Cn,t = E[Ln,t], (12)

κn,t =
E[Ln,t]

E[Lt]
. (13)
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A Capital structure in Norwegian banks
• Senior unsecured = Gjeld stiftet ved utstedelse av verdipapirer

• Subordinate = (1-a)*(Fondsobligasjoner og ansvarlig lånekapital +Hybrid-
kapital klassifisert som egenkapital)

• Hybrid = a*(Fondsobligasjoner og ansvarlig lånekapital + Hybridkapital klas-
sifisert som egenkapital)

• Rest = Sum gjeld - Gjeld stiftet ved utstedelse av verdipapirer-Fondsobligasjoner
og ansvarlig lånekapital

der

a =
Kjernekapitaldekning− ren kjernekapitaldekning

Kapitaldekning− ren kjernekapitaldekning
.

Totale forpliktelser = Sum gjeld + Hybridkapital klassifisert som egenkapital

B Asset correlations in the IRB approach
The Basel Committee has provided different formulas for the asset correlations
for different business segments (IRB-types). For large corporate borrowers in-
cluding banks the asset correlation is computed by

ρ = 0.12× 1− e−50p

1− e−50
+ 0.24×

(
1− 1− e−50p

1− e−50

)
, (B.1)

where p is the probability of default for the specific borrower.
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